Trauma and Critical Care
Resuscitation

Byron Turkett, PA-C MPAS
Division of Trauma/Critical Care
Department of Surgery
University of Tennessee Medical Center
Knoxville, TN
University of Tennessee Medical Center - Knoxville
UTMC-K Level 1 Trauma Center

- Regional Teaching Hospital
- Surgery Residency and Surgical Critical Care Fellowship
- 250 mile Radius Level 1 Trauma Center Service Area Covering 4 States
- 3425 Trauma Admissions 2004
- 24 Bed Dedicated Trauma/Neuro Intensive Care Unit
- 30% Trauma ICU Admission Rate
Epidemiology

- U.S. trauma related costs exceed $400 billion dollars annually
- MVC’s account for 70% of trauma morbidity and mortality
- Leading cause of death in persons aged 1 – 44 years
- 60 million injuries per year occurs in the U.S.
 - Results in an average of 36.8 million hospital visits per year (40% of all ED visits)
Epidemiology

- Injury is a disease
- It has a “host” and “vectors”
 - The patient is the host
 - Vectors include cars, motorcycles, ATVs, PWCs, et al
- The prevention, research and treatment of trauma is woefully under funded compared to infectious disease, heart disease and cancer
- Trauma continues to affect the most productive members of society and particularly our most valuable national resource, children
A Typical Day in the Trauma Center

- It’s a beautiful day in East Tennessee
- You have had 2 cups of coffee
- Your only patient is just waiting on a floor bed, has a PCA, foley and feeds themselves
- Your biggest decision so far today is…
 ”Do I want the sirloin or grilled salmon from STEAKOUT Delivery”…..
- Finally, a nice QUIET day…and then it starts
13: Inbound Trauma
N432UT 1PT(S) Arrive
UT: 10:26 FULL ALERT
10:21AM 02/04/06
10: MOD ALERT GSW TO HEAD A % O, VSS/BLEED CONTROLLED ETA 7 MIN FEMALE
08: Inbound Trauma
N431UT 1PT(S) Arrive
UT: 13:23 MODIFIED
ALERT
The Trauma System & Notification

The Page Out
- Modified Alert
 - Stable VS, not intubated
- Arriving via LifeStar
- ETA is 5 minutes
- Today’s weather, 40 degrees/light rain

LifeStar’s Radio Call
- 34 y/o male
- MVC URD, ejected, + LOC, L femur deformity, decreased BS on the left, no visible movement of the lower extremities, responded to a fluid challenge
What are you thinking about possible injuries?

- Think head to toe
- Think worse case scenario and work backwards
- Maintain a high index of suspicion
- Never assume anything!
What did LifeStar See?
The Trauma Assessment

Getting the Trauma Bay Ready

- Staff at the bedside
 - Trauma Response Team (Attending, Resident, PA/NP, 2 RN’s)
 - X-ray, Lab, Respiratory Therapy

- Necessary Equipment
 - Airway Box/Ventilator/Oxygen
 - Pre-assembled IVF’s
 - Level 1 Infuser
 - Monitor/Manual BP cuff
 - Medications
The Trauma Team

Diagram

Head – MD/MLP
Team Leader, examines head to chest, Manages ABC’s

Lead Trauma RN
Assessment, Vitals, IV Access, Assist Team Leader, Documentation

Right 1 – MD/MLP
FAST U/S, upper extremity, soine & abdomen exam, chest tube

Trauma Assist RN/Paramedic
IV access, operate Level 1 infuser, blood products, meds

Right 2 – MD/MLP
Femoral access/blood, rectal, foley, lower extremity exam

Left 1 – MD/MLP
Extremity exam, chest tube, admit H&P

Out of the box:
X-ray, lab, security, chaplain, unit secretary, patient representative, bystanders

Attending Trauma Surgeon
Supervises all activities
The Trauma Assessment
The Trauma Assessment

Primary Assessment

Airway
 – Clear, talking

Airway

Airway

Airway

Airway

Airway

Airway
The Trauma Assessment

Primary Assessment

Breathing
- Absent breath sounds on left
- Rate >40/min, Pulse Ox 85%

Circulation
- HR 110 thready, SBP 100, distal pulses 1+
- No obvious bleeding, left thigh is swollen/firm
- IV Access
 - Minimum (2) 14 gauge sites or Central High Flow Line
 - Use Warmed LR
The Trauma Assessment

Primary Assessment

Disability
- Brief Neurologic Assessment
 - GCS is 13 (confused, sleepy)
 - Weak upper and no lower extremity movement
 - Pupils are 4mm, equal, reactive

Exposure
- Completely Undress
- Warm blankets to prevent hypothermia
Trauma Assessment

Adjuncts to the Primary Survey

- Obtain ABG
 - Ph 7.25, PCO2 50, PO2 64, O2 Sat 90%, HCO3 17, Base -7
- Attach Cardiac Monitor
 - Sinus Tach
- Order initial labs and x-rays
 - CBC, UA, T & C, Coags, CXR, Trauma CT Scan, L femur xray
- Perform FAST U/S
- Reassess ABC’s
 - Airway clear
 - Breathing - more labored and shallow, O2 sat 89% on NRB
 - Circulation - HR120, SBP 95 (after 2 L fluid bolus)
Trauma Assessment

Secondary Survey & Management

- Finger and Tube in every hole & Flip
 - Foley, NG, Rectal
- Give pain and sedation medications as needed
- Head to Toe Examination
- History – PMH/PSH, meds/allergies
- Interventions
Chest X-rays
What happens if you forget your ABC’s?
Trauma Assessment

- Physical Exam findings
 - Posterior C-spine tenderness
 - Decreasing level of consciousness (GCS 8)
 - Seat belt sign over chest and abdomen
 - Bilateral breath sounds after the chest tube
 - Abdomen is distended and without tenderness, no rectal tone
 - Deformed mid thigh, cool to touch, delayed cap refill
 - Left DP/PT barely palpable
 - Minimal upper extremity flexion, flaccid lower extremities
Trauma Assessment

- Your lab results and X-Rays
 - H/H 6.9/20; UA trace blood; INR 2.5
 - FAST Exam showed splenic renal interface and pelvic free fluid
 - 2nd ABG – pH 7.19, pCO2 53, pO2 85, HCO3 15, Base -9

- Vital signs after the secondary survey
 - HR 130, SBP 80 (after 4L LR), O2 Sat 96%
 - RR more rapid and shallow, struggling on NRB
Without A, there is no B, Without B, there is no C

- Constantly recheck your ABC’s
- This patient is on the verge respiratory arrest due to:
 - Chest trauma, pneumothorax
 - Increased work of breathing due to C-spine injury and subsequent diaphragm paralysis
- Rapid Sequence Intubation
 - Analgesia – Morphine or Fentanyl
 - Sedation – Versed or Etomidate
 - Paralyzing Agent – Succinylcholine or Vecuronium
CT Scan and X-Rays
CT Scan and X-Rays
Identifying Injury

Let’s list the injuries

- Closed head injury w/decreasing GCS
- C-spine injury w/quadraplegia
- Left Pneumothorax
- Grade 2 spleen laceration
- Left femur fracture
- Hemodynamic Instability
Stabilization and Definitive Treatment

- Call the OR
- Notify orthopedic & neurosurgeon
- Give fluids/blood products through the high flow line
 - Continue LR
 - PRBC’s, FFP, Platelets
- Continue to warm to >97 degrees
- Transfer the patient to the OR for definitive hemostasis
 - Exploratory Laparotomy
 - Left Femur ORIF
What did the surgeons find?

- 2L blood in abdomen
- Splenectomy performed
- No other intraabdominal injuries
- 1L blood loss from femur intramedullary nail
- Received 8u PRBC’s, 8u FFP and 10,000cc crystalloid
Your patient arrives in the Surgical Critical Care Unit

- Abdomen is open and vac packed
- HR 125, SBP 82
- On full Vent Support
- End of case HCT 21
- Patient is starting to emerge from anesthesia
Critical Care Unit Assessment

The Critical Care Unit Team
- MD/MLP
- RN
- Respiratory Therapist
- Pharmacist

Review events & treatment to this point
Order new labs/chest x-ray
- CBC, BMP, ABG, COAGS, CXR
Tertiary Exam (Head to toe) Look for undiscovered injuries
Establish Care & Treatment Plans for 24 hours
Critical Care Unit Assessment

- Continue the resuscitation
 - Endpoints include:
 - UOP > 30cc (0.5cc/kg/hr)
 - Base Deficit < 3
 - Stabilized HCT and SBP without pressor support

- Sedation & Analgesia
 - Narcotics, PRN & Drips
 - Fentanyl, Morphine
 - Amnesics & Anxiolytics
 - Versed, Ativan, Propofol
Critical Care Unit Assessment

- Communicate with your secondary patient
 - Have the MD/MLP present if possible
 - Give the family a brief “what to expect” summary before they reach the bedside
 - Identify the next of kin/decision maker
 - “Speak the local language”
 - It’s o.k. to care
Critical Care Unit Assessment

Preventive Measures

- DVT Prophylaxis
 - PAS
 - Lovenox, heparin, IVC filter
 - Ambulation

- PUD Prophylaxis
 - Diet
 - Enteral Feeding
 - H2 blockers & Proton Pump Inhibitors
Critical Care Unit Assessment

- Ventilator Associated Pneumonia Bundle
 - HOB at 30 degrees
 - Oral Care
 - DVT & PUD prophylaxis

- Patient Positioning
 - Reposition every 2 hours
 - Utilize Skin Protection Bed Systems
 - KinAire, RotaRest
The Physiologic Effects of Trauma: CHI/SAH/IPH

Central Nervous System
- Sensory/Motor/cognitive deficits
- Loss of basic reflexes

Cardiovascular
- Arrhythmias

Respiratory
- Impaired respiratory drive

Renal
- Electrolyte disorders
- Large volume diuresis

Gastrointestinal
- Increased incidence of PUD

Coagulation
- Increased bleeding and elevated INR

Acid Base
- Impaired respiratory and perfusion causes acidosis

Common Complications
- Increased ICP, herniation, brain death
The Physiologic Effects of Trauma

Spinal Cord Injury

Cardiovascular
- Loss of sympathetic vascular tone
- Hypotension
- Bradyarrythmias

Respiratory
- Loss of innervation to diaphragm, abdominal and intercostals
- Increased pCO2, work of breathing
- Prolonged vent support and possible tracheostomy

Renal
- Hypotension causes hypoperfusion and ARF
- Incontinence/Catheterization

Gastrointestinal
- Inability to self feed, requiring enteral feeding
- Hypoalbuminemia, malnutrition

Coagulation
- High risk for DVT/PE
- Requires IVC filter

Common Complications
- Muscle wasting syndrome
- Skin breakdown/decubitus
- Infection
The Physiologic Effects of Trauma

Chest Trauma/Pneumothorax

- Central Nervous System
 - Altered MS due to elevated pCO2
- Cardiovascular
 - Hypoxemia
 - Impaired function with tension PTX
- Respiratory
 - Decreased pO2, elevated pCO2
 - Increased work of breathing
 - Elevated Airway pressures
 - Altered tissue perfusion
- Renal
 - Compensates for elevated pCO2, holds on to HCO3
- Common Complications
 - Atelectasis
 - Respiratory failure
 - Empyema
 - ARDS
 - VAP
The Physiologic Effects of Trauma

Spleen Laceration

Central Nervous System
- Shunting preserves function until late stage

Cardiovascular
- Hypotension
- Hyperdynamic cardiac function
- Decreased tissue perfusion

Respiratory
- Compensatory increased respiratory rate

Renal
- Hypoperfusion causes ARF/CRF (elevated BUN/Cr)

Gastrointestinal
- Decreased gastric pH and increased risk for PUD
- NPO period can cause malnutrition/failure to heal

Coagulation
- Large volume blood loss leads to consumptive coagulopathy and further hemorrhage

Acid-Base
- Blood loss leads to anaerobic metabolism
- Build up of lactic acid and increased base deficit

Common Complications
- High risk for encapsulated bacterial infections
- At risk for OPSS (Overwhelming Post Splenectomy Sepsis)
- Must give H. flu, Meningococcal & S. Pneumo vaccines
The Physiologic Effects of Trauma
Femur Fracture

Central Nervous System
- Alerted MS, seizure coma due to fat emboli

Cardiovascular
- Tachycardia, hypotension due to blood loss
- Blood loss can be 1-2L in the thigh
- Possible arterial occlusion around fracture site

Respiratory
- Fat Emboli Syndrome
 - Inflammatory and obstructive mechanism
- High risk for DVT, PE
The Physiologic Effects of Trauma

Hypothermia

- Central Nervous System
 - CNS depression
- Cardiovascular
 - Bradycardia (not vagal mediated)
 - Hypotension
- Coagulation
 - Increased bleeding due to cold related factor dysfunction
- Acid – Base
 - Worsening acidosis
Questions or Comments?
Contact Information

Byron Turkett, PA-C, MPAS
bturkett@mc.utmck.edu