Trauma

Dustin Smith, MD
Department of Surgery
University of Tennessee Graduate School
of Medicine
Knoxville, TN
Background

- UTMC-K Level 1 Trauma Center
 - Regional Teaching Hospital
 - Surgery Residency and Surgical Critical Care Fellowship
 - 250 mile Radius Level 1 Trauma Center Service Area Covering 4 States
 - 3710 Trauma Admissions 2006
 - 32 Bed Dedicated Surgical Critical Care Unit
 - 30% Trauma ICU Admission Rate
Background

- Number one cause of death age 1-44
- Fourth leading cause of death overall
- One half of related to MVCs or firearms
- Three times as many will suffer permanent disability
- $400 billion annual cost
Background

- **Time of death from trauma**
 - **Immediate**
 - Seconds to minutes
 - Injury to CNS, heart, or major blood vessels
 - **Early**
 - Minutes to hours
 - Major hemorrhage
 - Amenable to intervention (ATLS)
 - **Late**
 - Days to weeks
 - Sepsis, organ dysfunction (MODS, MSOF)
Advanced Trauma Life Support

- Developed by the ACS
- Creates changes during the *golden hour*
- Four phases
 - Primary survey
 - Resuscitation
 - Secondary survey
 - Definitive care
Diagnosis and treatment of immediately life-threatening injuries

ABCDE algorithm
 - Airway
 - Breathing
 - Circulation
 - Disability
 - Exposure
Primary Survey--Airway

- Most important aspect of care
- Everyone gets oxygen
- Evaluate for patency, respiratory effort, evidence of hypoxia
- Airway maneuvers
 - Maintain c-spine immobilization
 - Jaw thrust/chin lift
 - Remove foreign bodies, suction
 - Insert oral or nasal airway
 - Airway intubation
 - Surgical airway (eg cricothyroidotomy, tracheostomy)
Primary Survey--*Breathing*

- Assess along with *airway*
- Determine whether respirations are adequate
- Determine whether both lungs are working equally
 - Auscultation
 - Expansion
 - Palpation
 - Percussion
Primary Survey--*Circulation*

- Ensure adequate cardiac function and blood volume
 - Auscultation
 - Palpate peripheral pulses
 - Blood pressure measurement
 - Capillary refill
- Control external hemorrhage
- Assess tissue perfusion
- Give IV fluids
Primary Survey--Disability

- Assess neurologic disability
- Level of consciousness
- Response to stimuli
- AVPU scale
 - Alert
 - Responsive to vocal stimuli
 - Responsive to painful stimuli
 - Unresponsive
- Glasgow Coma Scale (GCS)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eyes</td>
<td>Does not open eyes</td>
<td>Opens eyes in response to painful stimuli</td>
<td>Opens eyes in response to voice</td>
<td>Opens eyes spontaneously</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Verbal</td>
<td>Makes no sounds</td>
<td>Incomprehensible sounds</td>
<td>Utters inappropriate words</td>
<td>Confused, disoriented</td>
<td>Oriented, converses normally</td>
<td>N/A</td>
</tr>
<tr>
<td>Motor</td>
<td>Makes no movements</td>
<td>Extension to painful stimuli</td>
<td>Abnormal flexion to painful stimuli</td>
<td>Withdrawal to painful stimuli</td>
<td>Localizes painful stimuli</td>
<td>Obeys Commands</td>
</tr>
</tbody>
</table>

Glasgow Coma Scale

- 1: Deep coma
- 2: Semi-coma
- 3: Moderate coma
- 4: Severe coma
- 5: Critical coma
- 6: Normal
Primary Survey -- Exposure

- Remove all clothes & blankets
- Thorough physical exam
- Re-cover with warm blankets
- Prevent hypothermia
Resuscitation

- Initial resuscitation begins when patient hits the door
- Resuscitation is guided with findings from Primary Survey and continuously reassessed until the patient is stable
- Obtain IV access and start IVF
 - Peripheral IVs
 - Central lines
 - Intraosseous lines
 - Use Lactated Ringers solution
 - Initial fluid bolus of 1000 cc in adults, 10-20 cc/kg in children
- If unresponsive to 2000 cc IVF begin blood transfusion
Secondary Survey

- Obtain medical history
 - AMPLE history
 - Allergies
 - Medications
 - Past illnesses
 - Last meal
 - Events
- Place urinary and gastric tubes
- Draw lab studies
- Obtain portable x-rays, ultrasound
- Obtain CT scans, other studies
Definitive Care

- Follows the secondary survey
- Includes procedures, operations, transfer of care, creating a care plan, etc
- Includes patient re-assessment to ensure no changes in status, no missed injuries
Hemorrhagic Shock

- Shock—inadequate organ perfusion
- Hypovolemia secondary to hemorrhage
 - Stop bleeding
 - Restore intravascular volume
- Pathophysiology
 - Compensatory vasoconstriction to preserve oxygen delivery to brain and heart
 - Inadequately perfused cells turn to anaerobic metabolism
 - Lactic acid is formed as a byproduct
 - Cell membrane dysfunction occurs leading to overall dysfunction and eventually death
Classes of Shock

- 70 kg adult has ~5000 cc blood volume
- Class I hemorrhage
 - Blood loss <15% (750 cc)
 - Vital signs normal, may have anxiety
 - Treat with crystalloid
- Class II hemorrhage
 - 15-30% blood loss (750-1500 cc)
 - Tachycardia, pulse pressure decreased, tachypnea, decreased urine output, anxiety/fear/hostility, delayed capillary refill
 - Treat with crystalloid
Classes of Shock

- **Class III hemorrhage**
 - 30-40% blood loss (1500-2000 cc)
 - Tachycardia (>120 bpm), pulse pressure decreased, tachypnea, decreased urine output, anxiety/fear/hostility, delayed capillary refill
 - Treat with IVF & typically blood products

- **Class IV hemorrhage**
 - >40% blood loss (2000 cc)
 - Immediately life threatening
 - Marked derangements in VS and worsening of other symptoms
 - Treat with IVF & blood products
Non-Hemorrhagic Shock

- Much less common in trauma

- Types
 - Cardiogenic
 - Neurogenic
 - Hypoadrenal
Non-Hemorrhagic Shock

- Cardiogenic
 - Myocardial infarction
 - Myocardial contusion (blunt cardiac injury)
 - Cardiac tamponade
 - Reduces venous return to the heart due to direct compression
 - Treat the underlying disorder to relieve shock
Non-Hemorrhagic Shock

• Neurogenic
 - Due to spinal cord injury
 - Sympathetic pathways are disrupted
 - Hypotension with bradycardia
 - Treat with IVF and pressor agents
Non-Hemorrhagic Shock

- Hypoadrenal
 - Typically occurs in people taking steroids
 - Suspect if shock that does not respond to fluids or pressor agents
 - Confirm diagnosis by checking cortisol levels
 - Treat with IV steroid replacement
Abdominal Trauma

- Unrecognized intraabdominal hemorrhage is a leading cause of preventable death
- 20% of pts will have normal abdominal exam
Abdominal Trauma

- **Anatomy**
 - From the diaphragm to the pelvic floor
 - Nipple line to perineum
 - Includes organs in the retroperitoneum

- **Physical exam**
 - Inspect, auscultate, percuss, palpate
 - Involuntary guarding or rebound indicate peritoneal inflammation
 - Check pelvis stability
 - Examine perineum and perform rectal/vaginal exam
Abdominal Trauma
Abdominal Trauma

Diagnostic studies

- Focused Assessment with Sonography for Trauma (FAST)
 - Detects the presence of abnormal fluid in 4 places
 - RUQ between kidney and liver (Morrison’s Pouch)
 - LUQ between kidney and spleen (splenorenal recess)
 - Pelvis around bladder
 - Pericardium

- Pros
 - Rapid, cheap, effective, can be repeated, easily learned, non-invasive

- Cons
 - Limited in obese, bowel gas, subcutaneous emphysema
 - Non-specific
Abdominal Trauma

- **Diagnostic studies**
 - **Diagnostic peritoneal lavage (DPL)**
 - 3-5 cm vertical midline incision made in lower abdomen
 - Aspirated for gross blood
 - Lavaged with fluid and retrieved
 - Sample sent for microscopic analysis
 - **Pros**
 - 98% sensitive for intraperitoneal hemorrhage
 - **Cons**
 - Invasive, perhaps overlysensitive, does not evaluate retroperitoneum, risk of injury, infection
Abdominal Trauma

- **Diagnostic studies**
 - **Computed tomography (CT)**
 - **Pros**
 - Excellent evaluation of most abdominal structures
 - Diagnostic standard for stable patients
 - **Cons**
 - Expensive
 - Poor at evaluating hollow viscus organs
 - Not suitable for unstable patients
Spleen

- Most commonly injured organ in blunt trauma
- Injury severity graded on 1-5 scale
- Low grade injuries often managed non-operatively
- High grade injuries treated with angiographic embolization or surgery
- Must provide vaccines for encapsulated bacteria after splenectomy
Blunt Abdominal Trauma
Blunt Abdominal Trauma
Blunt Abdominal Trauma
Blunt Abdominal Trauma

Liver

- Low grade injuries almost never require operative management
- Injuries graded on 1-5 scale
- High grade injuries treated with angiographic embolization
- Operation reserved for severe injuries
 - Goals are to stop bleeding and prevent bile leak
Blunt Abdominal Trauma
Blunt Abdominal Trauma

- Hollow viscus
 - Small bowel and duodenum most frequently injured
 - Difficult to diagnose
 - Seat belt sign or abdominal bruising
 - Free intraperitoneal fluid on diagnostic studies
Gunshot wounds

- Almost always result in intraabdominal injury
- Laparotomy almost always indicated
- If stable may undergo pre-op imaging studies
Penetrating Abdominal Trauma

- Knife stab wounds
 - If superficial and/or stable may undergo local exploration or imaging studies
 - Unstable patients or those with peritonitis go directly to surgery
Thoracic Trauma

Immediately lethal injuries

- Airway obstruction
- Tension pneumothorax
 - Continuous build-up of air in the pleural space with no means of escape
 - Lung is collapsed, mediastinum displaced, venous return impeded, leading to rapid hypotension, hypoxia, and death
 - Signs/symptoms—resp distress, tachycardia, hypotension, JVD, tracheal deviation, absent breath sounds, tympany
- Clinical diagnosis
- Treat with decompression
Thoracic Trauma
Thoracic Trauma

Immediately lethal injuries

- Hemothorax
 - Blood in the pleural space
 - Massive if >1500 cc immediately or >200 cc/hr x 3 hrs
 - Signs/symptoms similar to Ptx
 - CXR with white out
 - Treat with chest tube, proceed to OR if massive
Thoracic Trauma
Thoracic Trauma

- Immediately lethal injuries
 - Cardiac tamponade
 - Caused by accumulation of blood within the pericardial sac resulting in compression of the heart
 - Ventricular filling decreased giving decreased stroke volume and cardiac output
 - Signs/symptoms—muffled heart sounds, JVD, hypotension
 - Treat with IVF, pericardiocentesis, pericardotomy
Thoracic Trauma

- Immediately lethal injuries
 - Blunt aortic injury
 - Due to abrupt deceleration and tethering of the aorta
 - Common cause of death on scene
 - Signs/symptoms—mechanism of injury, CXR, angiography, CT angiography, echocardiogram
 - Treat with control of blood pressure or surgery
Thoracic Trauma
Thoracic Trauma
Thoracic Trauma

- Potentially lethal injuries
 - Pulmonary contusion
 - Injury to the lung parenchyma
 - Interstitial hemorrhage, edema, alveolar collapse, V/Q mismatch leading to hypoxemia
 - Due to blunt force
 - Associated with rib fractures, sternal fractures, and flail chest
 - Diagnose with CXR or CT
 - Treat with supplemental oxygen, pain control, pulmonary toilet
Thoracic Trauma

Non-lethal injuries

- Pneumothorax & hemothorax
 - Due to lung laceration, rib fractures, or chest wounds that extend to pleural space
 - Signs/symptoms—shortness of breath, pain with inspiration, splinting, hypoxia
 - Diagnosis confirmed with CXR
 - Treat with chest tube if large or symptomatic
Thoracic Trauma
Neurologic Trauma

- Head injury
 - Most common cause of trauma-related mortality
 - Causes >50% of trauma deaths
 - Leading cause of disability
 - Due to blunt or penetrating injury
Neurologic Trauma

- Head injury
 - Primary injury
 - The insult caused by the trauma
 - May be laceration, contusion, shear injury
 - Difficult to treat
 - Secondary injury
 - Injury to the brain caused by post-injury clinical factors
 - Preventable and treatable
 - Must avoid hypoxia, hypotension, fever
Neurologic Trauma

- Head injury
 - Variable material within a fixed space
 - Increase in intra-cranial pressure may lead to herniation and death
Neurologic Trauma

Head injury evaluation
- AMPLEx—mental status at the scene
- AVPU—current level of consciousness
- GCS—quantitative assessment of level of consciousness
 - Widely accepted
 - Reproducible
 - Useful in describing the severity of injury
 - Good prognostic indicator
- Physical exam—pupils and extremity strength
- Imaging—CT scan of the brain
Neurologic Trauma

Head injury management

- Starts with primary survey and resuscitation
- Minor injuries may require observation only
- Major injuries may require ICU care, intubation, and intracranial pressure monitoring
 - Ventricular catheter
 - ICP bolt
Neurologic Trauma
Neurologic Trauma

- Head injury management
 - Major injuries
 - Support cerebral perfusion
 - Prevent elevated intracranial pressure
 - Head of bed to 30 degrees, moderate hyperventilation, prudent fluid use
 - Must avoid hypoxia, hypotension, fever
 - Mannitol
 - Osmotic diuretic
 - Reduces brain swelling and lowers ICP
 - Treat seizures immediately
 - Initiate early enteral nutrition
Neurologic Trauma

- **Spinal cord injuries**
 - Must be considered in polytrauma patients
 - Initial management is with spine immobilization
 - Evaluate with physical exam, presence of certain reflexes, x-rays and CT scans
 - High injuries (above T5) can give neurogenic shock
 - Injuries necessitate neurosurgical consultation
 - Rehabilitation is an important part of long term management
Neurologic Trauma
Musculoskeletal Trauma

- Life-threatening extremity injuries include severe open fractures, proximal amputations, major crush injuries, and multiple fractures
- Knowledge of anatomy to predict associated injuries critical
- Can be associated with major blood loss
- Evaluation
 - Complete physical exam
 - Note wounds, deformities, swelling, bruising, misalignment, pain with palpation
 - Check strength, sensation, range of motion
Musculoskeletal Trauma

- **Initial management**
 - Control bleeding with direct pressure or tourniquets
 - Irrigate and debride wounds
 - Reduce dislocations and splint fractures ASAP
 - Obtain radiographs
 - Provide tetanus
 - Possibly provide antibiotics
Musculoskeletal Trauma
Musculoskeletal Trauma
Vascular injuries

- Evaluation
 - **Hard signs**
 - Pulselessness
 - Cold, blue extremity
 - Expanding hematoma
 - Pulsatile bleeding
 - Palpable thrill, audible bruit
 - Doppler exam
 - Ankle-brachial index
 - Angiography & CT angiography
- Treat with vascular surgical repair
Musculoskeletal Trauma

Compartment syndrome
- Increase in fascial compartment pressure that leads to high interstitial tissue pressure
- Often associated with vascular injury, crush injuries, and certain fractures
- Most common in calf and forearm
- May develop rapidly
Musculoskeletal Trauma

Compartment syndrome

- Look for 5 P’s
 - Parasthesias
 - Pain
 - Pallor
 - Poikilothermia
 - Pulselessness
- Diagnosis is clinical
- Support with compartmental pressure measurements
Musculoskeletal Trauma

- **Compartment syndrome**
 - Treat by fasciotomy
 - Anticipate renal failure
 - Due to muscle breakdown
 - Treat with IVF, mannitol, alkalinization
Questions?