Trauma

Dustin Smith, MD Department of Surgery University of Tennessee Graduate School of Medicine Knoxville, TN

Background

UTMC-K Level 1 Trauma Center

- Regional Teaching Hospital
- Surgery Residency and Surgical Critical Care Fellowship
- 250 mile Radius Level 1 Trauma Center Service Area Covering 4 States
- 3710 Trauma Admissions 2006
- 32 Bed Dedicated Surgical Critical Care Unit
- 30% Trauma ICU Admission Rate

Background

Number one cause of death age 1-44
Fourth leading cause of death overall
One half of related to MVCs or firearms
Three times as many will suffer permanent disability
\$400 billion annual cost

Background

Time of death from trauma

- Immediate
 - Seconds to minutes
 - Injury to CNS, heart, or major blood vessels
- Early
 - Minutes to hours
 - Major hemorrhage
 - Amenable to intervention (ATLS)
- Late
 - Days to weeks
 - Sepsis, organ dysfunction (MODS, MSOF)

Advanced Trauma Life Support

- Developed by the ACS
- Creates changes during the golden hour
- Four phases
 - Primary survey
 - Resuscitation
 - Secondary survey
 - Definitive care

Primary Survey

 Diagnosis and treatment of immediately life-threatening injuries

ABCDE algorithm

- Airway
- Breathing
- Circulation
- Disability
- Exposure

Primary Survey--Airway

- Most important aspect of care
- Everyone gets oxygen
- Evaluate for patency, respiratory effort, evidence of hypoxia
- Airway maneuvers
 - Maintain c-spine immobilization
 - Jaw thrust/chin lift
 - Remove foreign bodies, suction
 - Insert oral or nasal airway
 - Airway intubation
 - Surgical airway (eg cricothyroidotomy, tracheostomy)

Primary Survey--Breathing

- Assess along with *airway*
- Determine whether respirations are adequate
- Determine whether both lungs are working equally
 - Auscultation
 - Expansion
 - Palpation
 - Percussion

Primary Survey--Circulation

- Ensure adequate cardiac function and blood volume
 - Auscultation
 - Palpate peripheral pulses
 - Blood pressure measurement
 - Capillary refill
- Control external hemorrhage
- Assess tissue perfusion
- Give IV fluids

Primary Survey--Disability

- Assess neurologic disability
- Level of consciousness
- Response to stimuli
- AVPU scale
 - Alert
 - Responsive to vocal stimuli
 - Responsive to painful stimuli
 - Unresponsive
- Glascow Coma Scale (GCS)

	1	2	3	4	5	6
Eyes	Does not open eyes	Opens eyes in response to painful stimuli	Opens eyes in response to voice	Opens eyes spontaneously	N/A	N/A
Verbal	Makes no sounds	Incomprehensible sounds	Utters inappropriate words	Confused, disoriented	Oriented, converses normally	N/A
Motor	Makes no movements	Extension to painful stimuli	Abnormal flexion to painful stimuli	Withdrawal to painful stimuli	Localizes painful stimuli	Obeys Commands

Primary Survey--Exposure

Remove all clothes & blankets
Thorough physical exam
Re-cover with warm blankets
Prevent hypothermia

Resuscitation

- Initial resuscitation begins when patient hits the door
- Resuscitation is guided with findings from Primary Survey and continuously reassessed until the patient is stable
- Obtain IV access and start IVF
 - Peripheral IVs
 - Central lines
 - Intraosseous lines
 - Use Lactated Ringers solution
 - Initial fluid bolus of 1000 cc in adults, 10-20 cc/kg in children
- If unresponsive to 2000 cc IVF begin blood transfusion

Secondary Survey

Obtain medical history

- AMPLE history
 - Allergies
 - Medications
 - Past illnesses
 - Last meal
 - Events
- Place urinary and gastric tubes
- Draw lab studies
- Obtain portable x-rays, ultrasound
- Obtain CT scans, other studies

Definitive Care

Follows the secondary survey
Includes procedures, operations, transfer of care, creating a care plan, etc
Includes patient re-assessment to ensure no changes in status, no missed injuries

Hemorrhagic Shock

- Shock—inadequate organ perfusion
- Hypovolemia secondary to hemorrhage
 - Stop bleeding
 - Restore intravascular volume
- Pathophysiology
 - Compensatory vasoconstriction to preserve oxygen delivery to brain and heart
 - Inadequately perfused cells turn to anaerobic metabolism
 - Lactic acid is formed as a byproduct
 - Cell membrane dysfunction occurs leading to overall dysfunction and eventually death

Classes of Shock

- 70 kg adult has ~5000 cc blood volume
- Class I hemorrhage
 - Blood loss <15% (750 cc)</p>
 - Vital signs normal, may have anxiety
 - Treat with crystalloid
- Class II hemorrhage
 - 15-30% blood loss (750-1500 cc)
 - Tachycardia, pulse pressure decreased, tachypnea, decreased urine output, anxiety/fear/hostility, delayed capillary refill
 - Treat with crystalloid

Classes of Shock

Class III hemorrhage

- 30-40% blood loss (1500-2000 cc)
- Tachycardia (>120 bpm), pulse pressure decreased, tachypnea, decreased urine output, anxiety/fear/hostility, delayed capillary refill
- Treat with IVF & typically blood products
- Class IV hemorrhage
 - >40% blood loss (2000 cc)
 - Immediately life threatening
 - Marked derangements in VS and worsening of other symptoms
 - Treat with IVF & blood products

- Much less common in trauma
- Types
 - Cardiogenic
 - Neurogenic
 - Hypoadrenal

Cardiogenic

- Myocardial infarction
- Myocardial contusion (*blunt cardiac injury*)
- Cardiac tamponade
 - Reduces venous return to the heart due to direct compression
- Treat the underlying disorder to relieve shock

Neurogenic

- Due to spinal cord injury
- Sympathetic pathways are disrupted
- Hypotension with bradycardia
- Treat with IVF and pressor agents

Hypoadrenal

- Typically occurs in people taking steroids
- Suspect if shock that does not respond to fluids or pressor agents
- Confirm diagnosis by checking cortisol levels
- Treat with IV steroid replacement

 Unrecognized intraabdominal hemorrhage is a leading cause of preventable death
 20% of pts will have normal abdominal exam

Anatomy

- From the diaphragm to the pelvic floor
 - Nipple line to perineum
- Includes organs in the retroperitoneum
- Physical exam
 - Inspect, auscultate, percuss, palpate
 - Involuntary guarding or rebound indicate peritoneal inflammation
 - Check pelvis stability
 - Examine perineum and perform rectal/vaginal exam

Diagnostic studies

Focused Assessment with Sonography for Trauma (FAST)

- Detects the presence of abnormal fluid in 4 places
 - RUQ between kidney and liver (Morrison's Pouch)
 - LUQ between kidney and spleen (splenorenal recess)
 - Pelvis around bladder
 - Pericardium
- Pros
 - Rapid, cheap, effective, can be repeated, easily learned, non-invasive
- Cons
 - Limited in obese, bowel gas, subcutaneous emphysema
 - Non-specific

Diagnostic studies

- Diagnostic peritoneal lavage (DPL)
 - 3-5 cm vertical midline incision made in lower abdomen
 - Aspirated for gross blood
 - Lavaged with fluid and retrieved
 - Sample sent for microscopic analysis
 - Pros
 - 98% sensitive for intraperitoneal hemorrhage
 - Cons
 - Invasive, perhaps overlysensitive, does not evaluate retroperitoneum, risk of injury, infection

- Diagnostic studies
 - Computed tomography (CT)
 - Pros
 - Excellent evaluation of most abdominal structures
 - Diagnostic standard for stable patients
 - Cons
 - Expensive
 - Poor at evaluating hollow viscus organs
 - Not suitable for unstable patients

Spleen

- Most commonly injured organ in blunt trauma
- Injury severity graded on 1-5 scale
- Low grade injuries often managed nonoperatively
- High grade injuries treated with angiographic embolization or surgery
- Must provide vaccines for encapsulated bacteria after splenectomy

Liver

- Low grade injuries almost never require operative management
- Injuries graded on 1-5 scale
- High grade injuries treated with angiographic embolization
- Operation reserved for severe injuries
 - Goals are to stop bleeding and prevent bile leak

Hollow viscus

- Small bowel and duodenum most frequently injured
- Difficult to diagnose
 - Seat belt sign or abdominal bruising
 - Free intraperitoneal fluid on diagnostic studies

Penetrating Abdominal Trauma

- Gunshot wounds
 - Almost always result in intraabdominal injury
 - Laparotomy almost always indicated
 - If stable may undergo pre-op imaging studies

Penetrating Abdominal Trauma

- Knife stab wounds
 - If superficial and/or stable may undergo local exploration or imaging studies
 - Unstable patients or those with peritonitis go directly to surgery
Immediately lethal injuries

- Airway obstruction
- Tension pneumothorax
 - Continuous build-up of air in the pleural space with no means of escape
 - Lung is collapsed, mediastinum displaced, venous return impeded, leading to rapid hypotension, hypoxia, and death
 - Signs/symptoms—resp distress, tachycardia, hypotension, JVD, tracheal deviation, absent breath sounds, tympany
 - Clinical diagnosis
 - Treat with decompression

Immediately lethal injuries

- Hemothorax
 - Blood in the pleural space
 - Massive if >1500 cc immediately or >200 cc/hr x 3 hrs
 - Signs/symptoms similar to Ptx
 - CXR with white out
 - Treat with chest tube, proceed to OR if massive

Immediately lethal injuries

- Cardiac tamponade
 - Caused by accumulation of blood within the pericardial sac resulting in compression of the heart
 - Ventricular filling decreased giving decreased stroke volume and cardiac output
 - Signs/symptoms—muffled heart sounds, JVD, hypotension
 - Treat with IVF, pericardiocentesis, pericardotomy

Immediately lethal injuries

- Blunt aortic injury
 - Due to abrupt deceleration and tethering of the aorta
 - Common cause of death on scene
 - Signs/symptoms—mechanism of injury, CXR, angiography, CT angiography, echocardiogram
 - Treat with control of blood pressure or surgery

Potentially lethal injuries

- Pulmonary contusion
 - Injury to the lung parenchyma
 - Interstitial hemorrhage, edema, alveolar collapse, V/Q mismatch leading to hypoxemia
 - Due to blunt force
 - Associated with rib fractures, sternal fractures, and flail chest
 - Diagnose with CXR or CT
 - Treat with supplemental oxygen, pain control, pulmonary toilet

Non-lethal injuries

– Pneumothorax & hemothorax

- Due to lung laceration, rib fractures, or chest wounds that extend to pleural space
- Signs/symptoms—shortness of breath, pain with inspiration, splinting, hypoxia
- Diagnosis confirmed with CXR
- Treat with chest tube if large or symptomatic

Head injury

- Most common cause of trauma-related mortality
- Causes >50% of trauma deaths
- Leading cause of disability
- Due to blunt or penetrating injury

Head injury

- Primary injury
 - The insult caused by the trauma
 - May be laceration, contusion, shear injury
 - Difficult to treat
- Secondary injury
 - Injury to the brain caused by post-injury clinical factors
 - Preventable and treatable
 - Must avoid hypoxia, hypotension, fever

Head injury

- Variable material within a fixed space
- Increase in intra-cranial pressure may lead to herniation and death

Head injury evaluation

- AMPLE—mental status at the scene
- AVPU—current level of consciousness
- GCS—quantitative assessment of level of consciousness
 - Widely accepted
 - Reproducible
 - Useful in describing the severity of injury
 - Good prognostic indicator
- Physical exam—pupils and extremity strength
- Imaging—CT scan of the brain

Head injury management

- Starts with primary survey and resuscitation
- Minor injuries may require observation only
- Major injuries may require ICU care, intubation, and intracranial pressure monitoring
 - Ventricular catheter
 - ICP bolt

Head injury management

- Major injuries
 - Support cerebral perfusion
 - Prevent elevated intracranial pressure
 - Head of bed to 30 degrees, moderate hyperventilation, prudent fluid use
 - Must avoid hypoxia, hypotension, fever
 - Mannitol
 - Osmotic diuretic
 - Reduces brain swelling and lowers ICP
 - Treat seizures immediately
 - Initiate early enteral nutrition

Spinal cord injuries

- Must be considered in polytrauma patients
- Initial management is with spine immobilization
- Evaluate with physical exam, presence of certain reflexes, x-rays and CT scans
- High injuries (above T5) can give neurogenic shock
- Injuries necessitate neurosurgical consultation
- Rehabilitation is an important part of long term management

- Life-threatening extremity injuries include severe open fractures, proximal amputations, major crush injuries, and multiple fractures
- Knowledge of anatomy to predict associated injuries critical
- Can be associated with major blood loss
- Evaluation
 - Complete physical exam
 - Note wounds, deformities, swelling, bruising, misalignment, pain with palpation
 - Check strength, sensation, range of motion

Initial management

- Control bleeding with direct pressure or tourniquets
- Irrigate and debride wounds
- Reduce dislocations and splint fractures ASAP
- Obtain radiographs
- Provide tetanus
- Possibly provide antibiotics

- Vascular injuries
 - Evaluation
 - Hard signs
 - Pulselessness
 - Cold, blue extremity
 - Expanding hematoma
 - Pulsatile bleeding
 - Palpable thrill, audible bruit
 - Doppler exam
 - Ankle-brachial index
 - Angiography & CT angiography
 - Treat with vascular surgical repair

Compartment syndrome

- Increase in fascial compartment pressure that leads to high interstitial tissue pressure
- Often associated with vascular injury, crush injuries, and certain fractures
- Most common in calf and forearm
- May develop rapidly

Compartment syndrome

- Look for 5 P's
 - Parasthesias
 - Pain
 - Pallor
 - Poikilothermia
 - Pulselessness
- Diagnosis is clinical

 Support with compartmental pressure measurements

Compartment syndrome

- Treat by fasciotomy
- Anticipate renal failure
 - Due to muscle breakdown
 - Treat with IVF, mannitol, alkalinization

Questions?

