Nutrition Support

Brian J. Daley, MD, MBA, FACS, CNSP

Department of Surgery
The University of Tennessee Medical Center at
Knoxville

GOALS

- Understand the medical decision processes for evidence based medicine.
- Comprehend the impact of the history and science of Parenteral and Enteral nutrition.
- Optimize outcomes and reduce complications in the nutritional and total care of patients.

OBJECTIVES

- Employ Evidence Based Medicine and other such analytic techniques to optimize patient care.
- Describe the indications for initiating Nutritional Support.
- Delineate the risks and benefits of Parenteral and Enteral support for common diseases.
- Synthesize nutritional support therapies for complex patients.

Definition

- Nutrition = to nuture or grow
- Support = to bolster or strengthen

Definition

- Energy
 - Generate ATP
 - Storage
- Building Blocks
 - Build lean tissue
 - Create enzymes
- Supervisors
 - Hormones

Players

- Energy Protein 4 cal/gm, Lipid 9cal/gm and Carbohydrate 4 cal/gm
- Building blocks protein, lipids, trace elements
- Supervisors insulin, glucagon, growth hormone, IGF, epinephrine, endogenous steroids, prostaglandins, inflammatory mediators and vascular mediators

Definitions Normal Metabolism

- Normal physiology insulin
 - Maintain carcass repair and rebuild
 - Store excess energy for lean times
 - In conjunction with work build lean tissue
 - Marked by euglycemia and nitrogen balance
- Normal response evolution

INSULIN

- Anabolic hormone
- Promotes glucose uptake (not rate of oxidation)
- Enhances protein, glycogen and fat synthesis

Metabolism of Starvation

- Driven by low insulin levels
- Sequential and linear decay
 - Consume carcass no exogenous source of protein or energy
 - Consume energy stores
 - Reduce work conserve energy
 - Marked by hypoglycemia and negative nitrogen balance
- Events bedrest, infections, skin breakdown and death – at 70% IBW, about 120 days

Metabolic Response to Stress

- Counter-regulatory Hormones catecholamines, glucagon, ACTH, etc....
- Ebb Flow phases
 - Consume carcass repair and fight infection
 - Consume excess energy
 - Reduce work conserve energy
 - Marked by hyperglycemia and negative nitrogen balance
- Deleterious prolongation / sequential

Mediators of the Hyperglycemic Response

- Glucagon
 - Increased gluconeogenesis
 - Increased hepatic glycogenolysis
- Epinephrine
 - Increased gluconeogenesis
 - Skeletal muscle insulin resistance
 - Increased lypolysis and FFA
 - Suppression of insulin resistance

Mediators of the Hyperglycemic Response

- Growth Hormone
 - Skeletal muscle insulin resistance
 - Increased lipolysis
 - Increased gluconeogenesis
- Tumor Necrosis Factor
 - Skeletal muscle insulin resistance
 - Hepatic insulin resistance

Mediators of the Hyperglycemic Response

- Norepinephrine
 - Increased lipolysis
 - Increased gluconeogenesis
- Glucocorticoids
 - Skeletal muscle insulin resistance
 - Increased lypolysis
 - Gluconeogenesis increased
- Cortisol
 - Reduced skeletal muscle insulin sensitivity

Evidence Based Medicine

- Best Practices based on documented efficacy
- Literature review techniques and analysis to derive guidelines.

Definitions - EBM and Guidelines

- "...the conscientious, explicit and judicious use of current best evidence in making decisions about the care of individual patients..."
 - Sackett, BMJ 1996
- "Systematically developed statements to assist practioners and patients decisions about appropriate healthcare for specific clinical circumstances."
 - Institute of Medicine

Evidence Based Medicine

- Lack of research
- Poor study design
- Faulty analysis
- Misinterpretation
- Extension and/or Misapplication

Alternatives to EBM

- Eminence- grey hair
- Vehemence beat one's chest
- Eloquence Armani suit and big words
- Providence What Would Jesus Do?

- Diffendence no problem, mon'
- Nervousness –litigataphobia
- Confidence -Surgeonesque

Issacs and Fitzgerald. BMJ 1999

Resources

- AHRQ
- Cochrane Database
- EAST (www.east.org)
 - Primer

Nutrition Guidelines

- ASPEN
- ACCP
- Canadian
 - Newest
 - Supported
 - Validated
 - criticalcarenutrition.com

Nutrition Game Plan

Why feed?
Who to feed?
What to feed?
When to feed?
Where to feed?

Prime Directive

- Primium non nocere "First, Do no harm"!
- Live long and prosper.

Why Feed?

- Intuitively logical
- Improve outcomes: Survival, Decreased infections, Complications, Cost
- Therapeutic manipulation

Cumulative Energy Deficit

- Cumulative deficit directly related to infections, LOS, complications, vent days
 - Chiolero Clin Nutrit 24:503:2005
- Reducing deficit improves:
 - Infections (24%) and complications (24%), LOS (16 days).
 - Taylor CCM 27:2525;1999
 - LOS (10 days), Mortality (10%)
 - Martin CMAJ 170:197;2004

Who to Feed

- Lean Tissue Lost or Threatened
- Time 5-7 day rule
- Metabolism Hypo-, Hyper-... Normal
- Supporting data: Intuitive, Teleological,
 PRCT equivocal, VA cooperative
- Particular to general reasoning

Who to Feed Nutritional Assessment

SUBJECTIVE OBJECTIVE AUTOMATIC

Appearance Labs Time

Disease 'Metrics Disease

SGA Function Technical

Formulae

Nutritional Assessment

- Recent unintended weight loss
 - 10#/month
- Decreased lean or lipid tissues
- Decreased functionality
- Albumin levels
- Disease Process affecting Intake or digestion

What to Feed?

- Energy glucose, lipids, protein
- Precursors protein, lipids, trace elements, phosphorus
- Slimy, yet satisfying prepared products
- Adapt to patient status
- Obey the Prime Directive!

Substrate Utilization and the Stress Response

- Protein Catabolism
 - Used for synthesis of acute phase response proteins
 - Required for thermogenesis
 - Precursors for tissue repair
 - Immune function
 - Amino acids provided for hepatic gluconeogenesis

Substrate Utilization and the Stress Response

- Protein Catabolism
- Fatty Acids
 - Energy source for cardiac and skeletal muscles
 - Utilization in the liver and other tissues
 - Epinephrine-induced lipolysis
 - Hyperglycemia and resulting elevated insulin levels prevents mobilization from fat stores

Substrate Utilization and the Stress Response

- Protein Catabolism
- Fatty Acids
- Glucose
 - Fuel for central nervous system
 - Required for wound healing
 - Energy for the activation of the immune system
 - Hepatic gluconeogenesis NOT suppressed by glucose administration!

How to Feed

- Goal directed 25 kcal/kg, 1.5 2 gm protein/kg
- Adjust for body and disease
- Avoid overfeeding more is not better
- Manipulate metabolic milieu
- Constant critical care
- Do no harm

When to Feed

- Patient and Disease specific availability of route
- Five day rule
- Metabolic resuscitation
- Supporting data: Many studies (Moore, Daly, Alexander, ...) improved outcome, # infections with early feeding

Enteral v. IVF

- Infections decrease 28%, (p<0.03)
- LOS decreases 1 day (p<0.001)
- Mortality decreases 74% (p<0.06)
 - Lewis BMJ 323:1;2001
 - McClave JPEN 30:143;2006

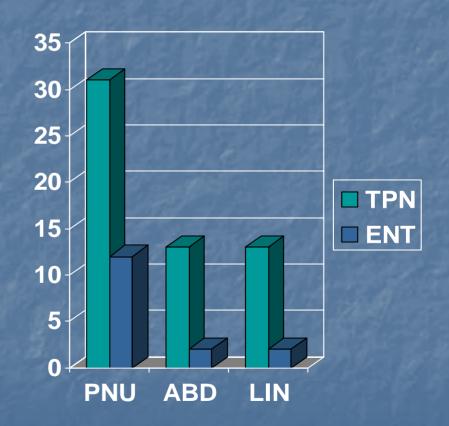
Early v. Later Enteral

- Decrease infection by 55%, (p<0.0006)</p>
- Decrease LOS 2.2 days, (p<0.0004)</p>
- Decrease mortality by 35%, (p<0.06)</p>
 - Marik CCM 29:2265; 2001
 - Heyland JPEN 27:355;2003, 2007

Where to Feed?

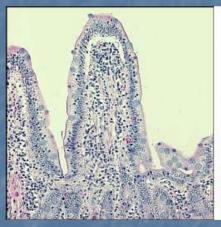
- No guts, no glory !
- Run it up the gut!
- A mighty fortress is our gut.

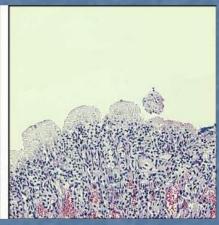
TPN v. Enteral History


- Central Venous Access Aubaniac 1952
- Dudrick and Wilmore 1968
- Widespread Application- late '70s and '80s
- Moore Needle J late '80s
- VA Cooperative early '90s
- Kudsk Penetrating Patients late '90s

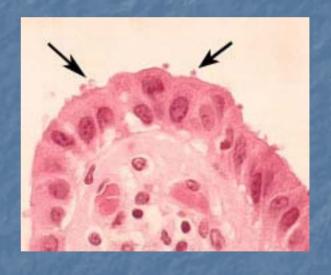
Canadian Clinical Practice Guidelines - 2007

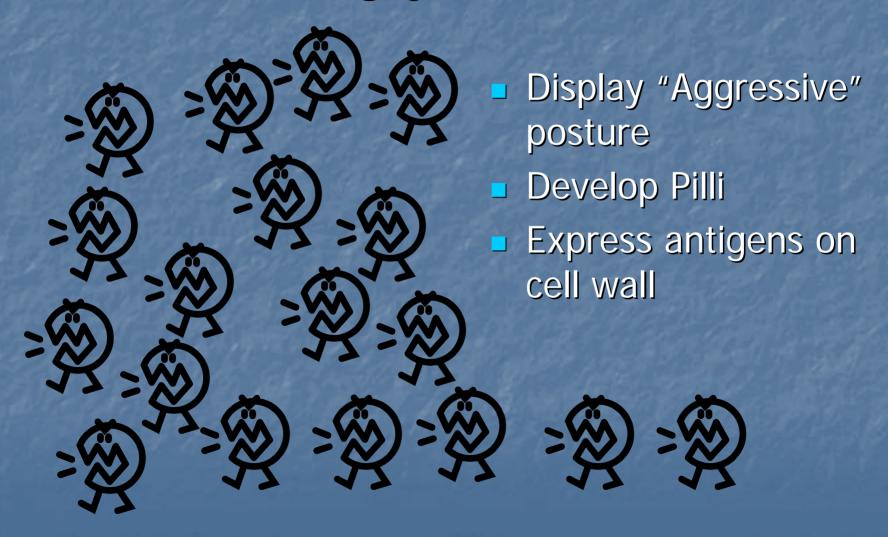
- Strongly Recommend
 - Enteral
- Recommend
 - <48°, Omega 3, Glut in Trauma/Burns, No Arg, Polymeric, SB feeds
- Consider/Insufficient Data
 - Everything else


Enteral v. Parenteral

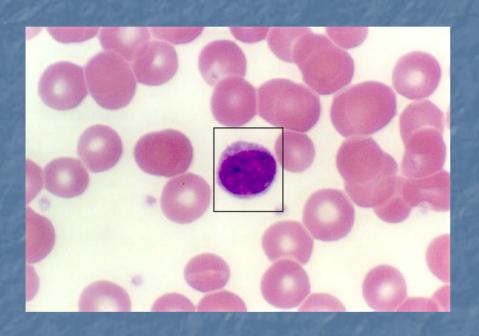

- Kudsk et al. Ann Surg 1992
- PRCT 98 pts.,ATI >15
- TPN v. jejunostomy,
 <24 hrs. fed</p>
- Septic morbidity
- Reduced pneumonia, intra-abd, line sepsis in enteral

GUT

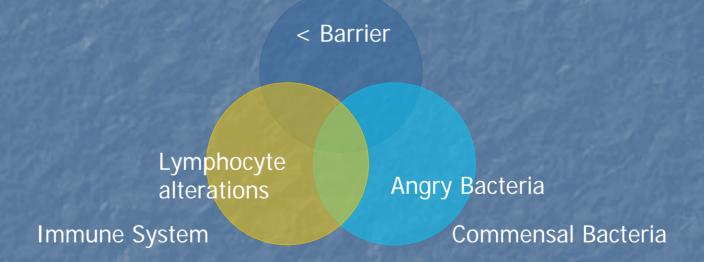

- Alterations in blood flow
 - No autoregulation
 - Digestion continues
- Alterations in permeability
- Decreased cell replication/ villi height
 - Lack of enteral feeding
 - Loss of glutamine



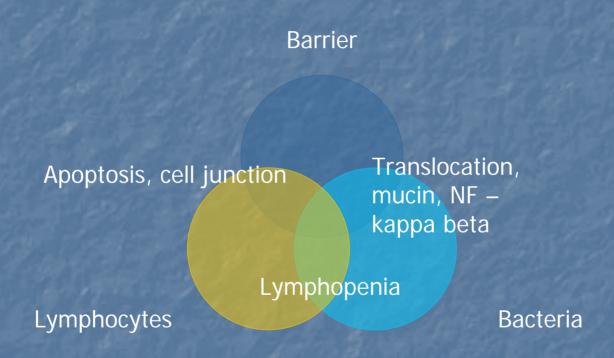
Gut Epithelium


- Largest Surface Area
 (300 m²)
- Cellular junction width
- Cellular Proliferation or Apoptosis
- Neuroendocrine potential

Angry Bacteria


Mucosal Immune System

- Largest lymph system
- Peyer's patches, LN, lamina propria and IE lymphocytes
- Altered # with stress


"Motor of Sepsis"

Intestinal Epithelium

Clark and Coopersmith. SHOCK 2007

Crosstalk

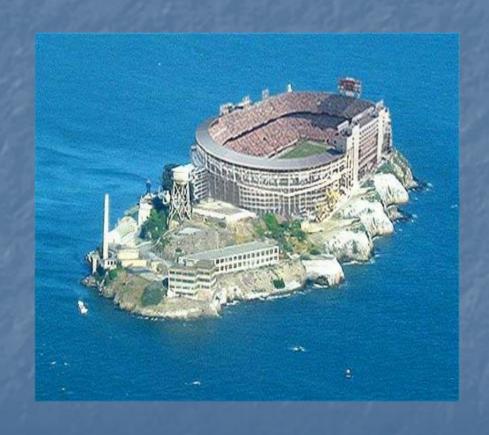
CYTOKINES, NO, LYMPHOKINES, RECEPTORS

Enteral Nutrition Indications

- Everyone
- Everybody
- Need access and egress

Any medical or surgical diagnosis

Contraindications to Enteral Feedings


- High output Fistula
- Obstruction
- Metabolic needs
- Enteral intolerance

Impact of the Amount of Enteral Formula Delivered to the ICU Patient

- Actual formula delivery
 - Delivery of 14-18 kcal/kg/day or 60-70% of enteral feeding goal associated with shortened LOS and ventilator days and with reduced infectious complications
 - Obese patients receiving < 18 kcal/kg had a shorter ICU LOS and fewer antibiotic days than those receiving greater energy delivery
 - No adequate studies demonstrate an impact on mortality or hospital cost related to enteral formula delivery

Complications of Enteral Nutrition

- Tube related
 - Malposition
- Gl related
 - Diarrhea
 - Dietary
 - Demand

Parenteral Nutrition

- Hyperosmolar concentrations of glucose and amino acids... and maybe lipids
- Requires central venous access

TPN

- Allows non-interactive feedings
- Can restore nutrient or energy deficits
- Metabolic and electrolyte resuscitation

TPN Troubles

- Requires critical care
 - NKHHC
 - Electrolytes
 - Hyperglycemia
- Absent nutrients
 - Glutamine
 - Omega 3 oils
- Lipid infusions
 - Omega 6
- Central line problems
- Cost

Indications for TPN

- Fistula
- Failure of enteral diet
- Short gut

Enteral V. Parenteral

- Early Enteral
 - <48 hours</p>
 - Goal
- 5 day rule
- TPN only after 7 days
- Convert to enteral ASAP

ED

- 38 y/o man –epigastric pain,vomiting
- Chronic ETOH, chronic pancreatitis
- BP 90's, BD = -10, Febrile
- CT = edema

ED

- CT scan
- Fluids
- Nutrition??

Early Enteral In Pancreatitis

- Improve Outcome
- Ameliorate disease
- Avoid Complications

Reducing Inflammation

- Pancreatic rest
- Resuscitation and avoiding Second hit/MSOF
- Stimulate inhibitors

Pancreas On/Off

- On
 - Feedings
 - Fat
 - Gastric

- Off
 - Peptides
 - GLP 1
 - PYY
 - Low Fat Feeds
 - PYY demonstrated to reduce histo changes, IL – 6 levels, prevent death

Grise et al. Pancreas 2002 24:90.

Therapy

- Aggressive resuscitation
- <48 hours feeding</p>
- Low in fat
- Reduction in ICU/MSOF
- 7 day Mortality
 - MSOF = 50%
 - No MSOF = 0%

McClave JPEN 2006 30:143 Johnson et al. Gut 2005

Case Two

- 75 y/o woman
 - Sigmoid colectomy for cancer
 - PMH DM, HTN
- POD #5
 - Fever, >BP, peritonitis
 - Anastomotic dehiscence at OR
- - P::F<250, BD = -10, u/o marginal

ICU

- When to Feed?
- Where to Feed?
- What to Feed?

Manipulate Metabolism

- Maintain Euglycemia
- Omega 3 fatty acids
 - Alter PG and EC
- Glutamine
 - Gut fuel
- Probiotics
 - Restore normal flora

Risk factors for stress hyperglycemia in critical illness

- Pre-existing diabetes mellitus
 - Insulin Deficiency
- Infusion of pressors
 - Insulin resistance
- Obesity
 - Insulin resistance
- Aging
 - Insulin deficiency

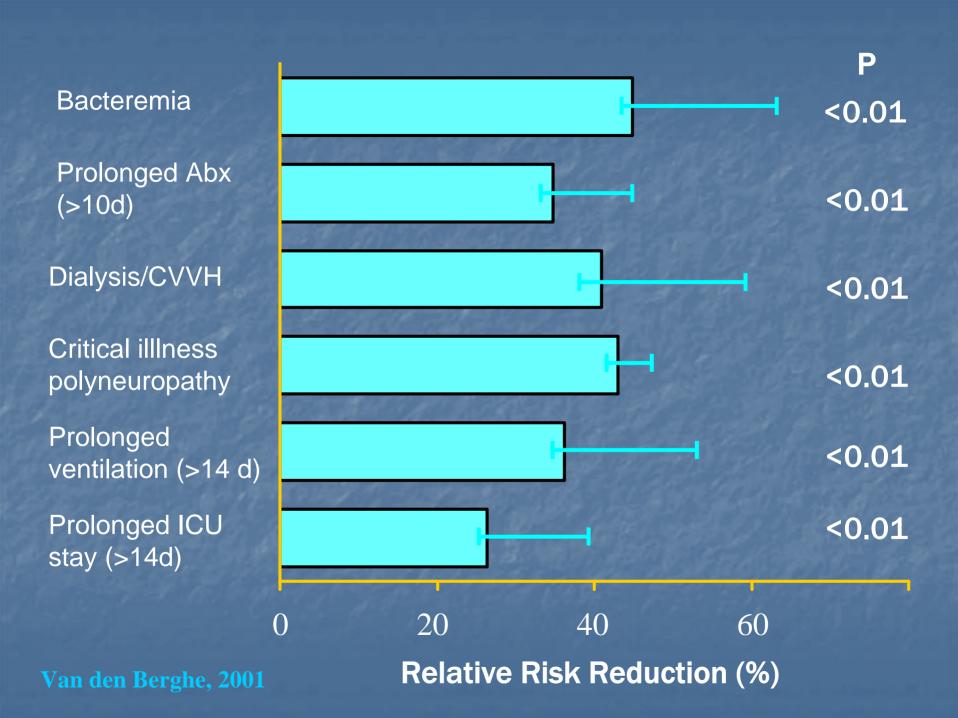
- Sepsis
 - Insulin deficiency & resistance
- Glucocorticoid therapy
 - Insulin resistance
- Bed rest
 - Reduced skeletal muscle insulin sensitivity

Observational Studies

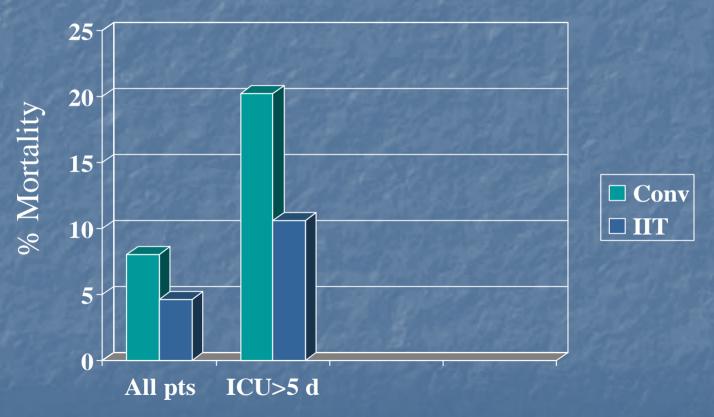
Morbidity

- Admit FBG >126/2 random BG > 200 associated with 29% more ICU admits in non-DM patients. Umpierrez 2002
- Admit BG > 8.0-10 mmol in non-DM with MI associated with risk of CHF or cardiogenic shock. Capes 2000
- Single BG > 220 in DM POD #1 had serious infection rates 5.7 x higher than DM post op with BG < 220. Pomposelli 1998</p>

Observational Studies


Mortality (cont'd)

Mean BG values in ICU med/surg patients were higher in non-survivors (163 mg/dl) than survivors (124 mg/dl). Lowest mortality occurred among patients with mean BG 80-99 mg/dl. Krinsley 2003



Intervention Trial

- Van den Berghe, 2001
 - Prospective, randomized controlled trial
 - Subjects: surgical ventilated ICU patients, n=1548.
 - Treatment groups
 - Group 1: Conventional treatment IV insulin infusion only if BG >215, then maintenance of BG 180-200.
 - Group 2: IIT IV insulin infusion to maintain BG 80-110.

Mortality in ICU patients receiving IIT vs conventional therapy

Van den Berghe, 2001

Recommendations

- In the critically ill patient with diabetes:
 - Scheduled insulin will likely be required while receiving nutrition support if previously on oral agent or insulin prior to admission (OK to use SQ intermediates)
 - Aggressive Sliding Scale to accompany SQ scheduled insulin
 - If unable to attain BG below 180 mg/dL (in ICU's) with SQ scheduled insulin regimen, consider the use of intravenous infusion

OR

24 y/o+9 mm+RUQ >>L FlankHow many tubes?

OR

- J-tube?
- G-tube?
- Formula ?
- Route ?

Pre-Op/Post Op

- Post pyloric feeding
 - Reduce NPO Time
- Open AbdomenFeedings
 - SpeedClosure/Improveoutcome
- Trophic Effects
 - Fistula closure

Questions?

Review

- Nutrition Support
- Provide specific needs
- Provide therapeutic care
- Enteral >>Parenteral
- Prevent Complications
- Use availableEvidence Based Data

Thanks

