### **Acute Arterial Disease**

#### Mitchell H. Goldman MD

### **ACUTE ARTERIAL OCCLUSION**

- "The operation was a success but the patient died"
- High Morbidity and Mortality
  - Emergent operations in high risk patients
  - 20% mortality reported (Dale, JVS 1984)
  - Endovascular approaches may lower peri-procedural mortality while preserving outcomes

# **Etiology of Arterial Occlusion**

### Overview

- Atherosclerosis
- Thrombotic occlusion
- Embolic occlusion
- Trauma
- Treatment Options

## **Evolutio of Atherosclerosis**

| Foam<br>cells                 | Fatty<br>streak | Intermediate      | Atheroma  | Complicated Fibrous<br>lesion/rupture plaque |                             |
|-------------------------------|-----------------|-------------------|-----------|----------------------------------------------|-----------------------------|
|                               |                 | )                 | )         | Se                                           | 1                           |
|                               | EI              | ndothelial d      | ysfunctio | n                                            |                             |
| From First Decade             |                 | From Third Decade |           | From Fourth Decade                           |                             |
| Growth Mainly by Lipid Accumu |                 |                   |           | rombosis<br>ematoma                          | Smooth Muscle<br>& Collagen |



- Areas of low wall shear stress
- Increased endothelial permeability
- Sub-endothelial lipid and macrophage accumulation
- Foam cells
- Formation of Fatty Streak
- Fibrin deposition and stabilizing fibrous cap

## **Evolutio of Atherosclerosis**





#### Necrosis

- Inflammatory environment
- Destabilization of fibrious cap

## **Evolutio** of Atherosclerosis



#### Rupture of Fibrous Cap

- Pro-thrombotic core Exposed to lumen
- Acute thrombosis
- Embolization of plaque materials and thrombus

## Thromboembolism

- Embolus- greek "embolos" means projectile
- Mortality of 10-25%
- Mean age increasing 70 years
   Rheumatic disease to atherosclerotic disease
- Classified by size or content
  - Macroemboli and microemboli
  - Thrombus, fibrinoplatelet clumps, cholesterol

## Macroemboli





#### Cardiac Emboli

- Heart source 80-90% of thrombus macroemboli
- MI, A.fib, Mitral valve,
  Valvular prosthesis
- Multiple emboli 10% cases
- TEE
  - Views left atrial appendage, valves, aortic root
  - not highly sensitive

### Thromboembolism



• 75% of emboli involve axial limb vasculature

- Femoral and Polilteal
   >50% of emboli
- Branch sites
- Areas of stenosis

## Thromboembolism

Non-cardiac sources

- Aneurysmal (popliteal > abdominal)
- Paradoxical
  - Follows PE with PFO
- TOS
- Cryptogenic -5-10%
- Atheroemboli (artery to artery)

- Shaggy Aorta
  Thoracic or abdominal
- Spontaneous
- latrogenic
  - 45% of all atheroemboli
- "Blue toe syndrome"
  - Sudden
  - Painful
  - cyanotic
  - palpable pulses
- livedo reticularis



## Blue Toe Syndrome



- Risk factors: PVD, HTN, elderly, CAD, recent arterial manipulation
- Emboli consist of thrombus, platelet fibrin material or cholesterol crystals
- Lodge in arteries 100 –200 micron diameter



- Affect variety of end organs
  - extremities, pelvis ,GI, kidney, brain
- Work-up:
  - TEE ascending aorta, CT Angio, Angiography
- Laboratory: CRP elevated, eosinophilia
- Warfarin my destablize fibrin cap and trigger emboli.



- Reported incidence of 0.5-1.5% following catherter manipulation
  - Advance/remove catheters over guidewire
  - Brachial access? controversial
- Limited Sx– Anti-coagulation/ observation
- Temporal delay up to 8 weeks before renal symptoms

Therapy

- Prevention and supportive care
  - Statins, prostacyclin analogs (iloprost), ASA, Plavix
- Elimination of embolic source and reestablishing blood flow to heal lesions
- Surgical options: endaterectomy or resection and graft placement
  - Abdominal Aorta Aorta-bi-fem bypass
  - Ligation of external iliac and extra-anatomic bypass if high risk
- Endovascular therapy
  - Angioplasty & stenting higher rate of recurrence
  - Athrectomy no data

## **Acute Thrombosis**

- Graft thrombosis (80%)
  - intimal hyperlasia at distal anastamosis (prosthetic)
  - Retained valve cusp
  - Stenosis at previous site of injury

- Native artery
  - Intra-plaque hemmorhage
  - Hypovolemia
  - Cardiac failure
  - hypercoagable state
  - Trauma
  - Arteritis, popliteal entrapment, adventitial cystic disease

## Acute Thrombosis

- Heparin Induced Thrombosis
  - White Clot Syndrome
  - Heparin dependent IgG anti-body against platelet factor 4
  - 3-10 days following heparin contact
  - Dx: thrombosis with > 50% decrease in Platelet count
  - Tx: Direct thrombin inhibiors: Agartroban & Hirudin – Avoid all heparin products
  - Morbity and Mortality: 7.4-61% and 1.1-23%

## **Other causes of Thrombosis**

- Anti-thrombin III Defiency
- Protein C & S Defiency
- Factor V Leiden
- Prothrombin 20210 Polymorphism
- Hyper-homocystinemia
- Lupus Anti-coagulant (anti phospho-lipid syndrome)

## "The Cold Leg"

- Clinical Diagnosis
  - Avoid Delay

#### Anti-coagulate immediately

- Pulse exam
- 6 P'S (pain, pallor, pulselessness, parathesias, paralysis, poiklothermia)
- Acute –vs- Acute on chronic
  - Collateral circulation preserves tissue
  - Traditional 4-6 hr rule may not apply
- The Two P's-paralysis and paresthesia

# **Diagn otic** Evaluation

- **SVS/ISCVS** Classification
  - "Rutherford Criteria"
- Class I: Viable
  - Pain, No paralysis or sensory loss
- Class 2: Threatened but salvageable
  - 2A: some sensory loss, No paralysis >No immediate threat
  - 2B: Sensory and Motor loss > needs immediate treatment
- Class 3: Non-viable
  - Profound neurologic deficit, absent capillary flow,skin marbling, absent arterial& venous signal

## Therapeutic Optio s

– Class 1 or 2A

- Anti-coagulation, angiography and elective revascularzation
- Class 2B
  - Early angiographic evaluation and intervention
  - Exception: suspected common femoral emboli
- Class3
  - Amputation

## **Diagn otic** Evaluation

### Modalities

- Non-invasive:
  - Segmental pressure drop of 30mmhg
  - Waveforms
  - CTA / MRA : avoid nephrotoxity
    - Center dependent
    - Wave of the future?
- Contrast Angiography
  - Gold Standard





## **Thrombotic –vs- Embolic**

#### • Thrombotic

- History
  - Claudication, PVD
  - Bypass graft
- Physical
  - Hair loss, shiny skin
  - Bi-lateral Dz
- Angiographic
  - Diffuse disease
  - mid vessel occlusion
- PVD confuses diagnosis

### • Embolic

- History
  - Cardiac events
  - Acute onset
  - Hx of emboli
- Physical
  - Normal contralateral exam
  - A.fib
- Angiographic
  - meniscus Cut-off in normal vessel
  - Bifurcations affected

Determination of etiology possible in 85% of cases

## Treatme t Optio s

#### • Multiple options available

- Conventional surgery
  - embolectomy
  - endarterectomy
  - revascularization
- Thrombolytic therapy
- Percutanious mechanical thrombectomy
- Native vessel thrombosis often require more elaborate operations



- Pain
- Poikylothermia (Polar)
- Pallor
- Pulseless
- Paresthesia\*
- Paralysis\*

## The Importan tTwo P's

- Indicate impending tissue loss and the need to revascularize now; not in six to eight hours
- Paresthesia-loss of nerve function; in the foot the peroneal nerve between 1<sup>st</sup> and 2<sup>nd</sup> toe
- **Paralysis-**loss of nerve and muscular function

## Treatme t Fn dame tals

- Early recognition and anti-coagulation
  - Minimizes distal propagation and recurrent emboli
- Modality of Tx depends on:
  - Presumed etiology
  - Location/morphology of lesion
  - Viability of extremity
  - Physiologic state of patient
  - Available vein conduit for bypass grafting

## Treatme t: Thrombosis

Separate graft thrombosis into early and Late groups

#### **Early thrombosis**

- Technical defect
- Repairable
- Avoid lytic Tx
  - 14 days vein
  - 30 days graft
- Explore both anastamosis
- On-table Angio
  - Twists, kniks, stenosis

#### Late thrombosis

- Duration & degree of ischemia
- Lytic Thearpy (clas1-2a)
  - Good 1<sup>st</sup> approach
  - Unmasks lesion (valve/stenosis)
  - F/u endo or open repair
- Open surgery (2b)
  - Thrombectomy/patch
  - Re-bypass

- Fogarty embolectomy catheter
  - Intoduced 1961
- Adherent clot catheter
- Graft thrombectomy catheter
- Thru-lumen catheter
  - Selective placement over wire
  - Administer: lytics, contrast





#### **Surgical Therapy**

- Iliac and femoral embolectomy
  - Common femoral approach
  - Transverse arteriotomy proximal profunda origin
  - Collateral circulation may increase backbleeding
  - Examine thrombus



- Popliteal embolectomy
  - 49% success rate from femoral approach
  - Blind passage selects peroneal 90%
  - may expose tibialperoneal trunk & guide catheter
  - Idrectly cannulate distal vessels

- Distal embolectomy
  - Retrograde/antegrade
    via ankle incisions
  - Frequent
    - Rethrombosis
  - Thrombolytic Tx viable alternative

- Completion angiography
  - 35% incdence of retained thrombus
  - IVUS more sensitive then angio
- Failure requires
  - Thrombolytic thearpy
  - revascularization

# **Thrombolytic Therapy**

Advantages

- Opens collaterals & microcirculation
- Avoids sudden reperfusion
- Reveals underlying stenosis
- Prevent endothelial damage from balloons

Risks

- Hemorhage
- Stroke
- Renal failure
- Distal emboli transiently worsen ischemia

# Surgery –vs- Thrombolysis

- STILE Trial
- Surgery vs Thrombolytics for Ischemia of Lower Extremity
  - 393 pts with non-embolic occlusion
  - Surgery vs r-TPA or r-UK
- Thrombolytics : improved amputation free survival and shorter hospital stay (0-14 days)
- Surgery: revascularization more effective for ischemia of > 14 days duration

Ann Surg 1994, 220:251

# Surgery –vs- Thrombolysis

**TOPAS** Trial

- 2 phase
- 544 patients
- r-UK vs Surgery
- Need for surgery Reduced 55%
- Similar amputation and mortality rates

NEJM 338, 4/16/98

## h dication for Thrombolysis

Category 1-2a limbs should be considered

- Class 2b : Two schools of thought

1) "Delay in definitive Tx"

2)"Thrombolytics extend window of opportunity"

- Clots <14days most responsive
  - But even chronic thrombus can be lysed
- Large clot burden
  - Better response to lytic tx than surgery
  - Requires longer duration of thrombolytics

## **Techn que of Thrombolysis**

- Guide Wire Traversal Test (GTT)
  - Abilty to traverse lesion best predictor of success
  - Use 0.035 in angled glide wire
  - "knuckling-over" indicates sub-intimal plane
  - Attempt pro-grade, Anti-grade, lytic bolus

## **Techn que of Thrombolysis**

- Catheter directed delivery
  - 1) Lace clot via catheter with side holes
  - 2) Pulse-Spray technique (mechanical component)
- Urokinase and TPA equally effective
- 4 hr treatment followed by angiogram
  - 4000IU/min x4hr, 2000Iu/M=min x 48h
    r-UK (TOPAS Trial)
  - no improvement after 4hr >> surgery
- Continue Heparin gtt
- Fibrinogen levels

## Mecha ical Thrombectomy

- Percutaneous aspiration embolectomy
  - Viable alternative in selected patents
  - Varity of devises
  - Combines diagnostic and therapeutic procedure
  - Removes non-lysable debris
  - Effective in distal vessels
  - Risk distal embolization
    - Combine with lytic Tx

## Reperfusio Sy drome

- Ischemic-reperfusion syndrome
  - Local: endothelial damage, capillary permeability, Transudative swelling, cellular damage
    - Compartment Syndrome
    - Tx: Fasciotomy
  - Systemic: Lactic Acidosis, Hyperkalemia, Myoglobin, Inflammatory Cytokines
    - Cardiopulmonary complications
  - Renal Tubular necrosis
    - Myoglobin precipitates
    - Tx: Volume, Urinary alklinization

## Compartme t Sy drome

- Increased Intracompartmental pressure; the <u>Two P's</u>
- Less than 30 mm Hg difference between ICP and MAP, or 10 mmg difference between ICP and diastolic, or greater than 15mm pressure by Whiteside technique
- Ischemia/reperfusion, trauma, venous outflow obstruction, fracture, crush
- Whiteside catheter

### **Compartment Pressure**



Inject into compartment slowly until meniscus moves and measure pressure on manometer-15 mmHg or less is normal

#### Struker system



#### Fasciotomy





#### **Arm Fasciotomy**



## **Reperfusion ARF**

- Myoglobulinemia, myoglobinuria, hyperkalemia, acidosis
- Bicarbonate on releasing the fascia
- Alkalinze urine
- Hydrate
- Mannitol

## Summary

- Thrombotic and embolic occlusions are separate processes with different presentations and treatments
- Treatment pathways in AAO are complex and vary depending on clinical situation
- Catheter-based treatments preserve outcomes with less overall morbidity
- Consider fasciotomy on clinical grounds

#### Vascular Trauma

#### **Cervical Trauma**

#### Zones

• Zone 1-Below the cricoid cartilage

 Cervical incision plus anterior thoracotomy or median sternotomy

- Zone 2-Cricoid cartilage to angle of jaw – Cervical incision
- Zone 3-Above angle of jaw – Jaw subluxation

## **Cervical Injury**

- Penetrating versus Blunt
- Treatment with stroke-early revascularization
- Tracheobronchial, esophogeal or spinal injury1-7%
  - Subcutaneous emphysema
  - hematemesis

# Hard Signs/Soft Signs Penetrating Trauma

Shock

Hard

- Pulsatile bleeding
- Loss of pulse with evolving neurologic deficit
- Expanding hematoma

#### **Usually exploration**

#### • History of bleeding

- Proximity
- Nerve injury
- Stable hematoma
- Unequal blood pressure measurement

**Diagnostic measures** 

## Penetrating Cervical Trauma

- CTA/CT-penetrating trauma without hard signs
- Occult injury-
  - Flaps-watch
  - Dissections-repair if easy, anticoagulate if not
  - Pseudoaneurysms-repair large ones early
- Anticoagulate only large flaps if can't operate-not great data!

## **Blunt Cervical Trauma**

- Hyperextension of neck
  - Lateral articular processes of C1-C3
  - dissection
- Direct blow
- Laceration by bone

## Screening for Carotid Injury

#### **Denver Criteria**

- Hemorrhage, hematoma
- Bruit
- Neuro exam inconsistent with head findings
- Stroke on CT
- Focal deficit
- LeFort II or III
- Basilar skull fx involving carotid canal
- GCS<6
- C-spine fx
- Hanging with anoxic injury

18% of screened had injury

#### Memphis Criteria

- Nero exam not explained by brain injury
- Horner's syndrome
- Neck soft tissue injury
- Le Fort II or III
- Basilar skull fracture
- C spine fracture

29% of screened had injury

#### **Cervical Arterial Injury**













## **Classic Stretch Injury**

- History of hyperextension (i.e. swimming)
- Severe neck to head ache near ear
- Horner's syndrome
- Hypoglossal n. injury
- Stroke









- Thrombosis-After 1-3hrs, no treatment
- Massive stroke-no Rx, anticoagulate if not contraindicated
- No or mild stroke and accessible-repair or stent
- Mild or no stroke and inaccessibleanticoagulate if not contraindicated

### **Blunt Thoracic Injury**

## **Blunt Aortic Injury**

- Below the subclavian artery
- Shearing stress-fixed vs non-fixed aorta, rib cage compression, ligamentum arteriosum
- Mechanism of injury
  - Seat belt strap
  - Fractures of clavicle, ribs, strenum
  - Reversed Toyota sign
- Xray
  - Apical Cap
  - Widening of mediastinum
  - Indistinct aortic nob
  - Trachaia deviation, bronchus depressed
- CT

**Xray** 



#### **Deviated Trachea**



#### Widened Mediastinum/Aortic Knob



## Apical Cap



### Xray

#### Chest x-ray screen

Positive predictive value 10% Negative predictive value 98%

Too many false positives

## CT





#### Treatment

- Emergency treatment-hemodynamically unstable because of aortic injury
- Expectant
  - Hemodynamically unstable because of other injuries
  - Hemodynamically stable
- No treatment-missed, lost to followup

### Treatment

- Initial blood pressure control
- Surgery
  - Bypass
  - Clamp and sew
- Endovascular surgery

## Surgery



#### Endovascular Surgery



## Results

| Variable<br>Complication         | Relative Degree of Risk <sup>®</sup> |              |                     |
|----------------------------------|--------------------------------------|--------------|---------------------|
|                                  | Clamp and Sew                        | Shunt–Bypass | Endovascular Repair |
| Operative stress                 | High                                 | Medium       | Low                 |
| Blood loss                       | Medlum                               | Medium       | Low                 |
| Operative time                   | Medium                               | High         | Low                 |
| Paraplegia                       | High                                 | Medium       | Low                 |
| Clinical scenario                |                                      |              |                     |
| Patient with high surgical risk  | High                                 | Medium       | Low                 |
| Patient with severe lung injury  | High                                 | Medium       | low                 |
| Patient with severe head injury  | High                                 | High         | Low                 |
| Patient with challenging anatomy | Medium                               | Low          | High                |

\* Relative degree of risk refers to a general comparison among the three operative procedures.

## **Peripheral Injury**

- Hard signs-explore-especially the 2 p's
- Soft signs-diagnostic test to rule out or watch
- Mandatory diagnostic test-posterior dislocation of knee or elbow
- Blunt trauma associated with injury to vessels
  - Supracondylar fracture of arm or leg
  - Dislocation fracture at ankle

#### **Posterior Dislocation**



## Intimal Flap

- May occur in penetrating or blunt trauma without hard signs
- Issue is when to assess invasively and when to intervene
- Risks are thrombosis, embolism and pseudoaneurysm
- Consensus that most may be observed
- Anticoagulation unnecessary-possible ASA

### Observation

- Most have no sequallae
- May thrombose
- Long term
  - Fistula
  - Pseudoaneurysm
- Embolism

### Intimal Flap



At Injury

No treatment-6 weeks

#### A-V Fistula



#### Posttraumatic Pseudoaneurysm



